यदि बारंबारता बंटन
$X_i$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
Frequency $f_i$ | $3$ | $6$ | $16$ | $\alpha$ | $9$ | $5$ | $6$ |
का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.
$5$
$4$
$3$
$2$
लघु विधि द्वारा माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए।
ऊँचाई (सेमी में) | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
बच्चों की संख्या |
$3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
$20$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ पाये गये। पुनः जाँच करने पर पाया गया कि एक प्रेक्षण $9$ गलत था सही प्रेक्षण $11$ था। तो सही प्रसरण है
माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है
यदि दस धन पूर्णांकों $1,1,1, \ldots, 1, k$ का प्रसरण $10$ से कम है, तो $k$ का अधिकतम संभावित मान ......... है |
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा