13.Statistics
hard

मान $9=\mathrm{x}_1 < \mathrm{x}_2 < \ldots<\mathrm{x}_7$ एक $A.P.$ में हैं, जिसका सर्वा अन्तर $\mathrm{d}$ है। यदि $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_7$ का मानक विचलन $4$ है तथा माध्य $\overline{\mathrm{x}}$ है, तो $\overline{\mathrm{x}}+\mathrm{x}_6$ बराबर है:

A

$18\left(1+\frac{1}{\sqrt{3}}\right)$

B

$34$

C

$2\left(9+\frac{8}{\sqrt{7}}\right)$

D

$25$

(JEE MAIN-2023)

Solution

$9=x_1 < x_2 < \ldots \ldots < x_7$

$9,9+d, 9+2 d, \ldots \ldots .9+6 d$

$0, d, 2 d, \ldots \ldots \cdot 6$

$\bar{x}_{\text {new }}=\frac{21 d }{7}=3 d$

$16=\frac{1}{7}\left(0^2+1^2+\ldots \ldots+6^2\right) d^2-9 d^2$

$=\frac{1}{7}\left(\frac{6 \times 7 \times 13}{6}\right) d ^2-9 d ^2$

$16=4 d^2$

$d^2=4$

$d=2$

$\bar{x}+x_6=6+9+10+9$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.