- Home
- Standard 11
- Mathematics
13.Statistics
hard
मान $9=\mathrm{x}_1 < \mathrm{x}_2 < \ldots<\mathrm{x}_7$ एक $A.P.$ में हैं, जिसका सर्वा अन्तर $\mathrm{d}$ है। यदि $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_7$ का मानक विचलन $4$ है तथा माध्य $\overline{\mathrm{x}}$ है, तो $\overline{\mathrm{x}}+\mathrm{x}_6$ बराबर है:
A
$18\left(1+\frac{1}{\sqrt{3}}\right)$
B
$34$
C
$2\left(9+\frac{8}{\sqrt{7}}\right)$
D
$25$
(JEE MAIN-2023)
Solution
$9=x_1 < x_2 < \ldots \ldots < x_7$
$9,9+d, 9+2 d, \ldots \ldots .9+6 d$
$0, d, 2 d, \ldots \ldots \cdot 6$
$\bar{x}_{\text {new }}=\frac{21 d }{7}=3 d$
$16=\frac{1}{7}\left(0^2+1^2+\ldots \ldots+6^2\right) d^2-9 d^2$
$=\frac{1}{7}\left(\frac{6 \times 7 \times 13}{6}\right) d ^2-9 d ^2$
$16=4 d^2$
$d^2=4$
$d=2$
$\bar{x}+x_6=6+9+10+9$
Standard 11
Mathematics