यदि प्रकाश का वेग $(c)$, गुरुत्वाकर्षण नियतांक $(G)$ तथा प्लांक नियतांक $(h)$ को मूल मात्रक माना जाए तब नई पद्धति में द्रव्यमान की विमा होगी
$\left[h^{\frac{1}{2}} c^{-\frac{1}{2}} G^1\right]$
$\left[ h ^1 c ^1 G ^{-1}\right]$
$\left[ h ^{-\frac{1}{2}} c ^{\frac{1}{2}} G ^{\frac{1}{2}}\right]$
$\left[h^{\frac{1}{2}} c^{\frac{1}{2}} G ^{-\frac{1}{2}}\right]$
यदि आवृत्ति, घनत्व $(\rho )$ लंबाई $(a)$ तथा पृष्ठ-तनाव $(T)$ का फलन हो तो इसका मान होगा
विमीय विश्लेषण के द्वारा प्रतिरोधकता (resistivity) को मूलभूत नियतांकों $h, m_\theta, c, e, \varepsilon_0$ के माध्यम से निम्न में से किसके रूप में निरुपित किया जा सकता है ?
माना $\ell, r , c$ व $v$ क्रमशः प्रेरकत्व , प्रतिरोध, धारिता तथा वोल्टता को दर्शाते है। $SI$ इकाई में $\frac{l}{ rcV }$ की विमाये होगी।
श्यानता गुणांक की विमायें हैं
किसी कण की समय $t$ पर स्थिति निम्न प्रकार दी गयी है $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\;(1 - {c^{ - \alpha \,t}})$, जहाँ ${v_0}$ एक नियतांक तथा $\alpha > 0,$ ${v_0}$ व $\alpha $ की विमायें क्रमश: हैं