गैसों का अवस्था समीकरण निम्नलिखित रुप में व्यक्त होता है $\left( {P + \frac{a}{{{V^2}}}} \right)(V - b) = RT,$ यहाँ $P$ दाब, $V$ आयतन, $T$ परम ताप तथा $a,\,b$ एवं $R$ नियतांक है। $a$ की विमायें होगी
$M{L^5}{T^{ - 2}}$
$M{L^{ - 1}}{T^{ - 2}}$
${M^0}{L^3}{T^0}$
${M^0}{L^6}{T^0}$
जल तरंगों का संचरण वेग $v$ उसके तरंगदैध्र्य $\lambda ,$ जल के घनत्व $\rho $ तथा गुरुत्वीय त्वरण $g$ पर निर्भर करता है। विमीय विधि द्वारा इन राशियों में सम्बन्ध होगा
किसी वृत्त की समीकरण $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, हैं जहां $\mathrm{a}$ त्रिज्या है। मूलबिन्दु का मान $(0,0)$, से बदलने पर यदि समीकरण परिवर्तित होती है तो नए समीकरण $(x-A t)^2+\left(y-\frac{t}{B}\right)^2=a^2$ में $A$ एवं $B$ की सही विमाएं ज्ञात कीजिए। $t$ की विमाएं $\left[\mathrm{T}^{-1}\right]$ है।
मार्टियन पद्धति में बल $(F)$, त्वरण $(A)$ और समय $(T)$ को मूल भौतिक राशि के रुप में उपयोग करते हैं। लम्बाई की विमायें मार्टियन पद्धति में होंगी