8. Sequences and Series
hard

જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?

A

$\frac{d}{a},\frac{e}{b},\frac{f}{c}$ એ સમાંતર શ્રેણીમાં છે. 

B

$d, e, f$ એ સમાંતર શ્રેણીમાં છે. 

C

$\frac{d}{a},\frac{e}{b},\frac{f}{c}$ એ સમગુણોત્તર શ્રેણીમાં છે. 

D

$d, e, f$  એ સમગુણોત્તર શ્રેણીમાં છે. 

(JEE MAIN-2019)

Solution

${b^2} = ac$

Also root of $a{x^2} + 2bx + c = 0$ are equal 

$ \Rightarrow x\frac{{ – b}}{a}$

$ \Rightarrow d{\left( {\frac{{ – b}}{a}} \right)^2} + 2e\left( {\frac{{ – b}}{a}} \right) + \int { = 0} $

$d{b^2} – 2aeb + f{a^2} = 0,{b^2} = ac$

$ \Rightarrow dac – 2aeb + f{a^2} = 0$

$ \Rightarrow dc – 7eb + fa = 0$

Dividing by $ac$

$ \Rightarrow \frac{d}{a} – \frac{{2e}}{b} + \frac{f}{c} = 0$

$ \Rightarrow \frac{d}{a} + \frac{f}{c} = 2.\frac{e}{b}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.