यदि किसी समान्तर श्रेणी के $11$ वें पद का दुगना, उसके $21$ वें पद के $7$ गुने के बराबर हो, तो $25$ वाँ पद होगा
$24$
$120$
$0$
इनमें से कोई नहीं
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=\frac{n(n-2)}{n+3} ; a_{20}$
यदि समीकरण $a{x^2} + bx + c = 0$ के मूलों का योग उनके व्युत्क्रमों के वर्गों के योगफल के बराबर है, तो $b{c^2},\;c{a^2},\;a{b^2}$ होंगे
यदि $\tan \,n\theta = \tan m\theta $ हो, तो $\theta $ के विभिन्न मान होंगे
यदि $a _{1}, a _{2}, a _{3}, \ldots .$ एक समान्तर श्रेणी में इस प्रकार हैं कि $a _{1}+ a _{7}+ a _{16}=40$ है, तो इस समान्तर श्रेणी के प्रथम $15$ पदों का योगफल है
यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :