$t = 0$ સમયે એક કણ ઊગમબિંદુ પાસેથી $5.0 \hat{ i }\; m / s$ ના વેગથી ગતિ શરૂ કરે છે. $x-y$ સમતલમાં તેની પર બળ એવી રીતે લાગે છે કે જેથી તે $(3.0 \hat{ i }+2.0 \hat{ j })\; m / s ^{2} $ નો અચળ પ્રવેગ ઉત્પન્ન કરે છે. $(a)$ જ્યારે કણનો $x$ -યામ $84 \;m$ હોય ત્યારે $y$ -યામ કેટલો હશે ? $(b)$ તે સમયે કણની ઝડપ કેટલી હશે ?
કોઈ સદિશને માન તથા દિશા બંને હોય છે. શું અવકાશમાં તેને કોઈ સ્થાન હોય છે? શું સમય સાથે તે બદલાઈ શકે ? શું અવકાશમાં જુદાંજુદાં સ્થાનો પાસે બે સમાન સદિશો $a$ તથા $b$ સમાન ભૌતિક અસર દર્શાવશે ? તમારા જવાબના સમર્થનમાં ઉદાહરણ આપો.
અવકાશમાં કોઈ સ્વૈચ્છિક ગતિ માટે નીચે આપેલા સંબંધો પૈકી ક્યો સાચો છે ?
$(a)$ $\left. v _{\text {average }}=(1 / 2) \text { (v }\left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {average }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2)$ a $t^{2}$
$(e)$ $a _{\text {merage }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
(અહીં ‘સરેરાશ મૂલ્ય $t_{1}$ થી $t_{2}$ સમયગાળા સાથે સંબંધિત ભૌતિકરાશિનું સરેરાશ મૂલ્ય છે.)
કોઈ કણનો સ્થાન સદિશ $\left[ {(3t)\widehat i\, + \,(4{t^2})\widehat j} \right]$ છે, તો તેનો $2\,s$ માટે વેગ સદિશ મેળવો.
પ્રક્ષિપ્ત પદાર્થ મહત્તમ ઊંચાઈએ પહોંચે ત્યારે તેના વેગ અને પ્રવેગ વચ્ચેનો ખૂણો કેટલો હોય છે ?