यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है
$2\sqrt 2 + 1$
$\sqrt 2 - 1$
$\sqrt 2 + 1$
$2\sqrt 2 - 1$
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की द्विगुणित कोटि $PQ$ ,इस प्रकार है कि $OPQ$ एक समबाहु त्रिभुज है, जबकि $O$ अतिपरवलय का केन्द्र है, तब अतिपरवलय की उत्केन्द्रता $e$ संतुष्ट करती है
$15$ सेमी लंबी एक छड़ $AB$ दोनों निर्देशांक्षों के बीच में इस प्रकार रखी गई है कि उसका एक सिरा $A , x-$अक्ष पर और दूसरा सिरा $B , y-$ अक्ष पर रहता है छड़ पर एक बिंदु $P (x, y)$ इस प्रकार लिया गया है कि $AP =6$ सेमी हैं दिखाइए कि $P$ का बिंदुपथ एक दीर्घवृत्त है।
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो
वक्र $16{x^2} + 25{y^2} = 400$ की नाभियाँ हैं
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
शीर्षों $(\pm 5,0),$ नाभियाँ $(±4,0)$