यदि वेग $[ V ]$, समय $[ T ]$ तथा बल $[ F ]$ मूल राशियां मानी जाएं, तो द्रव्यमान की विमा होगी।
$\left[{FT}^{-1} {V}^{-1}\right]$
$[FTV$ $\left.^{-1}\right]$
$\left[{FT}^{2} {V}\right]$
$\left[{FVT}^{-1}\right]$
सूची $I$ को सूची $II$ से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :
सूची $I$ | सूची $II$ |
$P.$बोल्ट्समान नियतांक | $1.$ $\left[ ML ^2 T ^{-1}\right]$ |
$Q.$ श्यानता गुणांक | $2.$ $\left[ ML ^{-1} T ^{-1}\right]$ |
$R.$ प्लांक नियतांक | $3.$ $\left[ MLT ^{-3} K ^{-1}\right]$ |
$S.$ ऊष्माता चालक | $4.$ $\left[ ML ^2 T ^{-2} K ^{-1}\right]$ |
Codes: $ \quad \quad P \quad Q \quad R \quad S $
मात्रकों की किसी पद्धति में यदि बल $(F)$, त्वरण $(a)$ एवं समय $(T) $ को मूल मात्रक माना जाये तो ऊर्जा का विमीय-सूत्र होगा
यदि $M = $द्रव्यमान, $L = $लम्बाई, $T = $समय तथा $I = $विद्युत धारा तथा यदि $[{\varepsilon _0}]$निर्वात की विद्युतशीलता तथा $[{\mu _0}]$ निर्वात की चुम्बकशीलता की विमा को प्रदर्शित करें तो $M,L,T$ तथा $I$ के पदों में सही विमीय सूत्र है। जहाँ संकेतों के सामान्य अर्थ हैं