यदि वेग $[ V ]$, समय $[ T ]$ तथा बल $[ F ]$ मूल राशियां मानी जाएं, तो द्रव्यमान की विमा होगी।
$\left[{FT}^{-1} {V}^{-1}\right]$
$[FTV$ $\left.^{-1}\right]$
$\left[{FT}^{2} {V}\right]$
$\left[{FVT}^{-1}\right]$
स्तम्भ I |
स्तम्भ II |
---|---|
$(i)$ क्यूरी |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ प्रकाश वर्ष |
$(B)$ $M$ |
$(iii)$ परावैद्युत सामथ्र्य |
$(C)$ विमाहीन |
$(iv)$ परमाणु भार |
$(D)$ $T$ |
$(v)$ डेसीबल |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
सही मेल का चुनाव कीजिए
यदि समय $(t)$, वेग $(v)$, और कोणीय संवेग $(l)$ को मूल मात्रकों के रूप में लिया गया है, तब $t, v$ और $l$ के पदों में द्रव्यमान $( m )$ की विमाएं होंगी।
एक वास्तविक गैस का समीकरण
$\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$ द्वारा दिया गया है, जहाँ
$\mathrm{P}, \mathrm{V}$ तथा $\mathrm{T}$ क्रमशः दाब, आयतन तथा तांपमान है
एवं $\mathrm{R}$ सार्वत्रिक गैस नियतांक है। $\frac{\mathrm{a}}{\mathrm{b}^2}$ की विमा किसके समतुल्य है ?
यदि $L,\,\,C$ तथा $R$ क्रमश: प्रेरकत्व, धारिता तथा प्रतिरोध प्रदर्शित करते हैं, तो निम्न में से कौन आवृत्ति की विमायें प्रदर्शित नहीं करेगा
सूची$-I$ | सूची$-II$ |
$(a)$ चुम्बकीय प्रेरण | $(i)$ ${ML}^{2} {T}^{-2} {A}^{-1}$ |
$(b)$ चुम्बकीय फ्लक्स | $(ii)$ ${M}^{0} {L}^{-1} {A}$ |
$(c)$ चुम्बकशीलता | $(iii)$ ${MT}^{-2} {A}^{-1}$ |
$(d)$ चुम्बकन | $(iv)$ ${MLT}^{-2} {A}^{-2}$ |