The number of real solutions of the equation $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$, is

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $0$

  • C

    $3$

  • D

    $2$

Similar Questions

If $\alpha , \beta , \gamma$ are roots of equation $x^3 + qx -r = 0$ then the equation, whose roots are

$\left( {\beta \gamma  + \frac{1}{\alpha }} \right),\,\left( {\gamma \alpha  + \frac{1}{\beta }} \right),\,\left( {\alpha \beta  + \frac{1}{\gamma }} \right)$

Consider the following two statements

$I$. Any pair of consistent liner equations in two variables must have a unique solution.

$II$. There do not exist two consecutive integers, the sum of whose squares is $365$.Then,

  • [KVPY 2018]

If $|x - 2| + |x - 3| = 7$, then $x =$

Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.

  • [JEE MAIN 2023]

Let $P(x) = x^3 - ax^2 + bx + c$ where $a, b, c \in R$ has integral roots such that $P(6) = 3$, then $' a '$ cannot be equal to