In $Fig.$ find $\tan P-\cot R .$
$1$
$5$
$0$
$12$
Evaluate the following:
$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
State whether the following are true or false. Justify your answer.
$(i)$ The value of tan $A$ is always less than $1 .$
$(ii)$ $\sec A=\frac{12}{5}$ for some value of angle $A$.
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$