Evaluate:
$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$
$1$
$0$
$-1$
$0.5$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
If $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ find $A$ and $B$
If $\angle A$ and $\angle B$ are acute angles such that $\cos A =\cos B ,$ then show that $\angle A =\angle B$.
$\sin 2 A=2 \sin A$ is true when $A=$
In $\triangle PQR ,$ right $-$ angled at $Q , PR + QR =25\, cm$ and $PQ =5\, cm .$ Determine the values of $\sin P, \cos P$ and $\tan P$.