एक समकोण त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =1$ तो सत्यापित कीजिए कि $2 \sin A \cos A=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

In $\triangle ABC , \tan A =\frac{ BC }{ AB }=1$ (see $Fig.$)

i.e. $BC = AB$

Let $AB = BC =k,$ where $k$ is a positive number.

Now,$AC=\sqrt{ AB ^{2}+ BC ^{2}}$

$=\sqrt{(k)^{2}+(k)^{2}}=k \sqrt{2}$

Therfore, $\sin A=\frac{ BC }{ AC }=\frac{1}{\sqrt{2}} \quad$ and $\cos A =\frac{ AB }{ AC }=\frac{1}{\sqrt{2}}$

So, $\quad 2 \sin A \cos A =2\left(\frac{1}{\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}}\right)=1,$ which is the required value.

1043-s4

Similar Questions

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\sqrt{\frac{1+\sin A }{1-\sin A }}=\sec A +\tan A$

बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।

$(i)$ $\tan A$ का मान सदैव $1$ से कम होता है।

$(ii)$ कोण $A$ के किसी मान के लिए $\sec A =\frac{12}{5}$

$\Delta PQR$ में, जिसका कोण $Q$ समकोण है $($ देखिए आकृति $), PQ =3 \,cm$ और $PR =6\, cm$ है। $\angle QPR$ और $\angle PRQ$ ज्ञात कीजिए।

बताइए कि निम्नलिखित कथन सत्य हैं या असत्य। कारण सहित अपने उत्तर की पुष्टि कीजिए।

$(i)$ $\cos A ,$ कोण $A$ के $cosecant$ के लिए प्रयुक्त एक संक्षिप्त रूप है।

$(ii)$ $\cot A , \cot$ और $A$ का गुणनफल होता है।

$(iii)$ किसी भी कोण $\theta$ के लिए $\sin \theta=\frac{4}{3}$