In $\Delta ABC$, if $a, b, c$ are in $A.P.$ (with usual notations), identify the incorrect statements -

  • A

    $h_1, h_2, h_3$ are in $H.P.$, where $h_1, h_2, h_3$ are altitudes from vertices $A,B$ $C$ respectively.

  • B

    $sinA, sinB, sinC$ are in $A.P.$

  • C

    $r_1, r_2, r_3$ are in $A.P.$

  • D

    $tan \frac{A}{2} , tan \frac{B}{2}, tan \frac{C}{2} $ are in $H.P.$

Similar Questions

Let $V_{\mathrm{r}}$ denote the sum of the first $\mathrm{r}$ terms of an arithmetic progression $(A.P.)$ whose first term is $\mathrm{r}$ and the common difference is $(2 \mathrm{r}-1)$. Let

$T_{\mathrm{I}}=V_{\mathrm{r}+1}-V_{\mathrm{I}}-2 \text { and } \mathrm{Q}_{\mathrm{I}}=T_{\mathrm{r}+1}-\mathrm{T}_{\mathrm{r}} \text { for } \mathrm{r}=1,2, \ldots$

$1.$  The sum $V_1+V_2+\ldots+V_n$ is

$(A)$ $\frac{1}{12} n(n+1)\left(3 n^2-n+1\right)$

$(B)$ $\frac{1}{12} n(n+1)\left(3 n^2+n+2\right)$

$(C)$ $\frac{1}{2} n\left(2 n^2-n+1\right)$

$(D)$ $\frac{1}{3}\left(2 n^3-2 n+3\right)$

$2.$  $\mathrm{T}_{\mathrm{T}}$ is always

$(A)$ an odd number $(B)$ an even number

$(C)$ a prime number $(D)$ a composite number

$3.$  Which one of the following is a correct statement?

$(A)$ $Q_1, Q_2, Q_3, \ldots$ are in $A.P.$ with common difference $5$

$(B)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $6$

$(C)$ $\mathrm{Q}_1, \mathrm{Q}_2, \mathrm{Q}_3, \ldots$ are in $A.P.$ with common difference $11$

$(D)$ $Q_1=Q_2=Q_3=\ldots$

Give the answer question $1,2$ and $3.$

  • [IIT 2007]

Find the sum of all natural numbers lying between $100$ and $1000,$ which are multiples of $5 .$

If $19^{th}$ terms of non -zero $A.P.$ is zero, then its ($49^{th}$ term) : ($29^{th}$ term) is

  • [JEE MAIN 2019]

Let $S_n$ denote the sum of the first $n$ terms of an $A.P$.. If $S_4 = 16$ and $S_6 = -48$, then $S_{10}$ is equal to

  • [JEE MAIN 2019]

Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?

$(A)$ $T_{20}=1604$

$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$

$(C)$ $T_{30}=3454$

$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$

  • [IIT 2022]