14.Probability
hard

In a box, there are $20$ cards, out of which $10$ are lebelled as $\mathrm{A}$ and the remaining $10$ are labelled as $B$. Cards are drawn at random, one after the other and with replacement, till a second $A-$card is obtained. The probability that the second $A-$card appears before the third $B-$card is

A

$\frac{11}{16}$

B

$\frac{13}{16}$

C

$\frac{9}{16}$

D

$\frac{15}{16}$

(JEE MAIN-2020)

Solution

$A:$ Event when card $A$ is drawn

$\mathrm{B}:$ Event when card $\mathrm{B}$ is drawn.

$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\frac{1}{2}$

Required probability $=\mathrm{P}(\mathrm{AA} \text { or }(\mathrm{AB}) \mathrm{A}$

or $(\mathrm{BA}) \mathrm{A} \text { or }(\mathrm{ABB}) \mathrm{A} \text { or }(\mathrm{BAB}) \mathrm{A} \text { or }(\mathrm{BBA}) \mathrm{A})$

$=\frac{1}{2} \times \frac{1}{2}+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) \times 2+\left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) \times 3$

$=\frac{1}{4}+\frac{1}{4}+\frac{3}{16}=\frac{11}{16}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.