In a certain population $10\%$ of the people are rich, $5\%$ are famous and $3\%$ are rich and famous. The probability that a person picked at random from the population is either famous or rich but not both, is equal to
$0. 07$
$0.08$
$0. 09$
$0. 12$
If $\mathrm{A}$ and $\mathrm{B}$ are two events such that $\mathrm{P}(\mathrm{A})=\frac{1}{4}, \mathrm{P}(\mathrm{B})=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{8}$ find $\mathrm{P}$ $($ not $\mathrm{A}$ and not $\mathrm{B})$
In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
If $A$ and $B$ are two events such that $P\,(A \cup B) = P\,(A \cap B),$ then the true relation is
The probability that a man will be alive in $20$ years is $\frac{3}{5}$ and the probability that his wife will be alive in $20$ years is $\frac{2}{3}$. Then the probability that at least one will be alive in $20$ years, is
Three athlete $A, B$ and $C$ participate in a race competetion. The probability of winning $A$ and $B$ is twice of winning $C$. Then the probability that the race win by $A$ or $B$, is