In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
Let $F$ be the set of people in the committee who speak French, and $S$ be the set of people in the committee who speak Spanish
$\therefore n(F)=50, n(S)=20, n(S \cap F)=10$
We know that:
$n(S \cup F)=n(S)+n(F)-n(S \cap F)$
$=20+50-10$
$=70-10=60$
Thus, $60$ people in the committee speak at least one of the two languages.
In a city $20$ percent of the population travels by car, $50$ percent travels by bus and $10$ percent travels by both car and bus. Then persons travelling by car or bus is......$\%$
An organization awarded $48$ medals in event '$A$',$25$ in event '$B$ ' and $18$ in event ' $C$ '. If these medals went to total $60$ men and only five men got medals in all the three events, then, how many received medals in exactly two of three events?
In a certain town $25\%$ families own a phone and $15\%$ own a car, $65\%$ families own neither a phone nor a car. $2000$ families own both a car and a phone. Consider the following statements in this regard:
$1$. $10\%$ families own both a car and a phone
$2$. $35\%$ families own either a car or a phone
$3$. $40,000$ families live in the town
Which of the above statements are correct
A class has $175$ students. The following data shows the number of students obtaining one or more subjects. Mathematics $100$, Physics $70$, Chemistry $40$; Mathematics and Physics $30$, Mathematics and Chemistry $28$, Physics and Chemistry $23$; Mathematics, Physics and Chemistry $18$. How many students have offered Mathematics alone
Let $\mathrm{U}$ be the set of all triangles in a plane. If $\mathrm{A}$ is the set of all triangles with at least one angle different from $60^{\circ},$ what is $\mathrm{A} ^{\prime} ?$