- Home
- Standard 11
- Mathematics
एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि
विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी. को नहीं चुना है।
$\frac{2}{15}$
$\frac{2}{15}$
$\frac{2}{15}$
$\frac{2}{15}$
Solution

Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
The given information can be represented by a Venn diagram as
It is clear that Number of students who have opted for $NSS$ but not $NCC$
$=n(B-A)=n(B)-n(A \cap B)=32-24=8$
Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$
$=\frac{8}{60}=\frac{2}{15}$