एक कक्षा के $60$ विद्यार्थियों में से $30$ ने एन. सी. सी. ( $NCC$ ), $32$ ने एन. एस. एस. $(NSS)$ और $24$ ने दोनों को चुना है। यदि इनमें से एक विद्यार्थी यादृच्छया चुना गया है तो प्रायिकता ज्ञात कीजिए कि

विद्यार्थी ने एन.एस.एस. को चुना है किंतु एन.सी.सी. को नहीं चुना है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.

Total number of students $=60$

Number of students who have opted for $NCC =30$

$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$

Number of students who have opted for $NSS =32$

$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$

Number of students who have opted for both $NCC$ and $NSS = 24$

$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$

The given information can be represented by a Venn diagram as

It is clear that Number of students who have opted for $NSS$ but not $NCC$

$=n(B-A)=n(B)-n(A \cap B)=32-24=8$

Thus, the probability that the selected student has opted for $NSS$ but not for $NCC$ 

$=\frac{8}{60}=\frac{2}{15}$

881-s130

Similar Questions

$A$ और $B$ दो घटनाएँ इस प्रकार हैं कि $P ( A )=0.54, P ( B )=0.69$ और $P ( A \cap B )=0.35 .$
ज्ञात कीजिए

$P \left( B \cap A ^{\prime}\right)$

चार व्यक्तियों के एक लक्ष्य पर ठीक प्रकार से प्रहार करने की प्रायिकताए क्रमश: $\frac{1}{2} \cdot \frac{1}{3}, \frac{1}{4}$ तथा $\frac{1}{8}$ हैं। यदि सभी इस लक्ष्य पर स्वतंत्र रूप से प्रहार करते हैं, तो लक्ष्य पर आघात होने की प्रायिकता है :

  • [JEE MAIN 2019]

दो गेंद एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में $10$ काली और $8$ लाल गेदें हैं तो प्रायिकता ज्ञात कीजिए दोनों गेंदें लाल हो।

$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ -नहीं $)$ का मान ज्ञात कीजिए।

माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है

  • [JEE MAIN 2021]