એક સમિતિમાં $50$ વ્યક્તિઓ ફ્રેંચ બોલે છે, $20$ સ્પેનિશ બોલે છે અને $10$ વ્યક્તિઓ બંને સ્પેનિશ અને ફ્રેંચ બંને બોલે છે. કેટલી વ્યક્તિઓ આ બે ભાષાઓમાંથી ઓછામાં ઓછી એક ભાષા બોલી શકે છે ?
Let $F$ be the set of people in the committee who speak French, and $S$ be the set of people in the committee who speak Spanish
$\therefore n(F)=50, n(S)=20, n(S \cap F)=10$
We know that:
$n(S \cup F)=n(S)+n(F)-n(S \cap F)$
$=20+50-10$
$=70-10=60$
Thus, $60$ people in the committee speak at least one of the two languages.
$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. માત્ર એક જ સમાચારપત્ર વાંચનાર વ્યક્તિઓની સંખ્યા શોધો.
એક કોલેજમાં $300$ વિધાર્થી છે , દરેક વિધાર્થી $5$ ન્યૂઝપેપર વાંચે છે અને દરેક ન્યૂઝપેપર $60$ વિધાર્થી વડે વંચાય છે તો ન્યૂઝપેપરની સંખ્યા મેળવો.
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.
એક વર્ગમાં $30$ વિર્ધાથી છે.જો $12$ એ મિસ્ત્રી કામ , $16$ એ ભૈતિક વિજ્ઞાન , $18$ એ ઇતિહાસ વિષય પસંદ કરે છે.જો $30$ વિર્ધાથી પૈકી દરેકે ઓછામાં ઓછો એક વિષય પસંદ કરે છે અને કોઇપણ વિર્ધાથી ત્રણેય વિષય પસંદ ન કરે તો બે વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.