$400$ व्यक्तियों के समूह में, $250$ हिंदी तथा $200$ अंग्रेज़ी बोल सकते हैं। कितने व्यक्ति हिंदी तथा अंग्रेज़ी दोनों बोल सकते हैं ?
Let $H$ be the set of people who speak Hindi, and E be the set of people who speak English
$\therefore n(H \cup E)=400, n(H)=250, n(E)=200$
$n(H \cap E)=?$
We know that:
$n(H \cup E)=n(H)+n( E )-n(H \cap E)$
$\therefore 400=250+200-n(H \cap E)$
$\Rightarrow 400=450-n(H \cap E)$
$\Rightarrow n(H \cap E)=450-400$
$\therefore n(H \cap E)=50$
Thus, $50$ people can speak both Hindi and English.
किसी कक्षा के $ 55 $ छात्रों में से, $23$ छात्र गणित, $24$ भौतिकी, $19 $ रसायन, $12$ गणित और भौतिकी, $ 9 $ गणित और रसायन,$7 $ भौतिकी और रसायन तथा $4$ सभी विषय पढ़ते हैं, तो केवल एक विषय पढ़ने वाले छात्रों की संख्या क्या होगी
एक सर्वेक्षण से पता चलता है कि $63%$ अमेरिकियों को पनीर पसंद है जबकि $76%$ को सेब पसंद है। यदि $x%$ अमेरिकियों को पनीर और सेब दोनों पसंद हैं, तो
एक सर्वेक्षण में पाया गया कि $21$ लोग उत्पाद $A , 26$ लोग उत्पाद $B , 29$ लोग उत्पाद $C$ पसंद करते हैं। यदि $14$ लोग उत्पाद $A$ तथा $B , 12$ लोग उत्पाद् $C$ तथा $A , 14$ लोग उत्पाद $B$ तथा $C$ और $8$ लोग तीनो ही उत्पादों को पसंद करते हैं। ज्ञात कीजिए कि कितने लोग केवल उत्पाद $C$ को पसंद् करते हैं।
एक बाजार अनुसंधान समूह ने $1000$ उपभोक्ताओं का सर्वेक्षण किया और सूचित किया कि $720$ उपभोक्ताओं ने उत्पाद $A$ तथा $450$ उपभोक्ताओं ने उत्पाद $B$ पसंद् किया। दोनों उत्पादों को पसंद करने वाले उपभोक्ताओं की न्यूनतम संख्या क्या है ?
$70$ व्यक्तियों के समूह में, $37$ कॉफ़ी, $52$ चाय पसंद करते हैं और प्रत्येक व्यक्ति दोनों में से कम से कम एक पेय पसंद करता है, तो कितने व्यक्ति कॉफ़ी और चाय दोनों को पसंद करते हैं ?