$400$ વ્યક્તિઓના સમૂહમાં, $250$ હિન્દી બોલી શકે છે અને $200$ અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? $400$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.
Let $H$ be the set of people who speak Hindi, and E be the set of people who speak English
$\therefore n(H \cup E)=400, n(H)=250, n(E)=200$
$n(H \cap E)=?$
We know that:
$n(H \cup E)=n(H)+n( E )-n(H \cap E)$
$\therefore 400=250+200-n(H \cap E)$
$\Rightarrow 400=450-n(H \cap E)$
$\Rightarrow n(H \cap E)=450-400$
$\therefore n(H \cap E)=50$
Thus, $50$ people can speak both Hindi and English.
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .
હોસ્પિટલમાં $89\, \%$ દર્દીને હદયની બીમારી છે અને $98\, \%$ એ ફેફસાની બીમારી છે. જો $\mathrm{K}\, \%$ દર્દીને જો બંને પ્રકારની બીમારી હોય તો $\mathrm{K}$ ની કિમંત આપલે પૈકી ક્યાં ગણમાં શક્ય નથી.
એક સર્વે અનુસાર એક શહેરમાં $63 \%$ લોકો સમાચારપત્ર $A$ વાંચે જ્યારે $76 \%$ લોકો સમાચારપત્ર $B$ વાંચે છે જો $x \%$ લોકો બંને સમાચારપત્ર વાંચે તો $x$ ની કિમત ........... હોઈ શકે
સમતલના તમામ ત્રિકોણના ગણને $\mathrm{U}$ તરીકે લો. જો ઓછામાં ઓછો એક ખૂણો $60^{\circ},$ થી ભિન્ન હોય તેવા ત્રિકોણનો ગણ $\mathrm{A}$ હોય, તો $\mathrm{A} ^{\prime}$ શું થશે ?
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.