$400$ વ્યક્તિઓના સમૂહમાં, $250$ હિન્દી બોલી શકે છે અને $200$ અંગ્રેજી બોલી શકે છે, તો કેટલી વ્યક્તિઓ હિન્દી અને અંગ્રેજી બંને બોલી શકે ? $400$ પૈકી દરેક વ્યક્તિ આ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલી શકે છે.
Let $H$ be the set of people who speak Hindi, and E be the set of people who speak English
$\therefore n(H \cup E)=400, n(H)=250, n(E)=200$
$n(H \cap E)=?$
We know that:
$n(H \cup E)=n(H)+n( E )-n(H \cap E)$
$\therefore 400=250+200-n(H \cap E)$
$\Rightarrow 400=450-n(H \cap E)$
$\Rightarrow n(H \cap E)=450-400$
$\therefore n(H \cap E)=50$
Thus, $50$ people can speak both Hindi and English.
$70$ વ્યક્તિઓના જૂથમાં, $37$ કૉફી પસંદ કરે છે અને $52$ વ્યક્તિને ચા પસંદ છે. તથા દરેક વ્યક્તિ આ બે પીણાંમાંથી ઓછામાં ઓછું એક પીણું પસંદ કરે છે. કેટલી વ્યક્તિઓ કૉફી અને ચા બને પસંદ કરે છે ?
એક યુધ્દ્વમાં $70\%$ સૈનિક એક આંખ ગુમાવે છે, $80\%$ એ કાન , $75\%$ એ હાથ, $85\%$ એ એક પગ , $x\%$ એ આપેલ ચાર અંગો ગુમાવે છે.તો $x$ ની ન્યૂનતમ કિંમત મેળવો.
એક સર્વે અનુસાર એક શહેરમાં $63 \%$ લોકો સમાચારપત્ર $A$ વાંચે જ્યારે $76 \%$ લોકો સમાચારપત્ર $B$ વાંચે છે જો $x \%$ લોકો બંને સમાચારપત્ર વાંચે તો $x$ ની કિમત ........... હોઈ શકે
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .
એક સંસ્થા પ્રસંગ '$A$' માં $48$ પ્રસંગ '$B$' માં $25$ અને પ્રસંગ '$C$ ' માં $18$ મેડલ આપે છે. જો આ મેડલ $60$ પુરુષોને ફાળે ગયા હોય અને ફક્ત પાંચ પુરુષોને ત્રણેય પ્રસંગોમાં મેડલ મળ્યા હોય, તો ત્રણ પ્રસંગોમાંથી કેટલાને બરાબર બે મેડલ મળ્યા હશે ?