એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા $.......$ થાય.
$\frac{3 \sqrt{15}}{12}$
$\frac{\sqrt{117}}{12}$
$\frac{\sqrt{119}}{12}$
$\frac{\sqrt{129}}{12}$
ઉપવલય $25(x + 1)^2 + 9 (y + 2)^2 = 225$ ની નાભિના યામ મેળવો.
બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
ધારોકે $C$ એ $(2,0)$ પર કેન્દ્રિત અને ઉપવલય $\frac{x^2}{36}+\frac{y^2}{16}=1$ ની અંદર અંતઃવૃત મોટામા મોટુ વર્તુળ છ. જો $(1,a)$ એ $C$ પર આવેલ હોય, તો $10 \alpha^2=.........$
ઉપવલય $4x^2 + 9y^2 = 1$ ઉપર કયા બિંદુ આગળના સ્પર્શકો $8x = 9y$ ને સમાંતર હોય ?
ઉપવલય $\mathrm{E}$ ની અક્ષોએ કાર્તેઝિય અક્ષોને સમાંતર છે અને કેન્દ્ર $(3,-4)$ અને એક નાભી $(4,-4)$ અને એક શિરોબિંદુ $(5,-4)$ આપેલ છે. જો $m x-y=4, m\,>\,0$ એ ઉપવલય $\mathrm{E}$ નો એક સ્પર્શક હોય તો $5 \mathrm{~m}^{2}$ ની કિમંત મેળવો.