એક ગુપ્રમાં $100$ વ્યક્તિ છે કે જે પૈકી $75$ અંગ્રેજી બોલો છે અને $40$ હિન્દી બોલે છે. દરેક વ્યક્તિ બે પૈકી ઓછામાં ઓછી એક ભાષા બોલે છે. જો માત્ર અંગ્રેજી ભાષા બોલતા વ્યકિત $\alpha$ હોય અને માત્ર હિન્દી બોલતા વ્યક્તિ $\beta$ હોય તો ઉપવલય $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ ની ઉત્કેન્દૃતા $.......$ થાય.
$\frac{3 \sqrt{15}}{12}$
$\frac{\sqrt{117}}{12}$
$\frac{\sqrt{119}}{12}$
$\frac{\sqrt{129}}{12}$
બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.
${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........
ધારો કે $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ એક ઉપવલય છે, જેની ઉત્કેન્દ્રતા $\frac{1}{\sqrt{2}}$ અને નાભિલંબની લંબાઈ $\sqrt{14}$ છે. તો $\frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ__________ છે.
$12$ મી લંબાઈનો સળિયો એવી રીતે ખસે છે કે જેથી તેના અંત્યબિંદુઓ યામાક્ષો પર રહે. $x-$ અક્ષ પરના અંત્યબિંદુથી $3$ મી દૂર આવેલ સળિયા પરના બિંદુ $P$ નો બિંદુગણ શોધો.
જો ઉપવલયના ગૌણ અક્ષની લંબાઈ એ નાભિઓ વચ્ચેના અંતરનું અડધું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.................... થાય.