11.Dual Nature of Radiation and matter
hard

ફોટોસેલ પર $\lambda $ તરંગલંબાઈ આપાત કરતાં ફોટો -ઇલેકટ્રોનની મહત્તમ ઝડપ $v$ મળે છે. જો હવે આ તરંગલંબાઈ બદલીને $\frac{{3\lambda }}{4}$ કરવામાં આવે તો ફોટો ઇલેકટ્રોનની મહત્તમ ઝડપ કેટલી થાય?

A

$v\;{(3/4)^{1/2}}$

B

$v\;{(4/3)^{1/2}}$

C

$ < v\;{(4/3)^{1/2}}$

D

$ > v\;{(4/3)^{1/2}}$

(AIPMT-1998) (AIIMS-2008) (JEE MAIN-2016)

Solution

$\frac{1}{2}m{\upsilon _{{{\max }^2}}}\,\, = \,\,\frac{{hc}}{{{\lambda _0}}}\,\,$ $ = \,\,hc\,\left( {\frac{{{\lambda _0}\, – \,\,\lambda }}{{\lambda {\lambda _0}}}} \right)$

$\therefore \,\,{\upsilon _{\max }}\,\, = \,\,\sqrt {\frac{{2hc}}{m}} \,\,\left( {\frac{{{\lambda _0}\, – \,\lambda }}{{\lambda {\lambda _0}}}} \right)$

આપાત વિકિરણની તરંગલંબાઈ $\lambda $ હોય,તો  ${\rm{ }}\upsilon \,\, = \,\,\sqrt {\frac{{{\rm{2hc}}}}{m}} \,\left( {\frac{{{\lambda _0}\, – \,\,\lambda }}{{\lambda {\lambda _0}}}} \right)\,\,……..(1)$

આપાત વિકિરણની તરંગલંબાઈ $\frac{{{\rm{3}}\lambda }}{{\rm{4}}}$ કરવામાં આવે , તો   $\upsilon \,\, = \,\,\,\,\sqrt {\frac{{{\rm{2hc}}}}{{\rm{m}}}\left( {\frac{{{\lambda _0}\, – \,\,\frac{3}{4}\lambda }}{{\left( {\frac{{3\lambda }}{4}} \right)\,{\lambda _0}}}} \right)} \,\,\,……….\,\,(2)\,$

સમીકરણ (2) અને (1) વડે ભાગતા ${\rm{, }}\,\,\frac{{\upsilon '}}{\upsilon }\,\, = \,\,\sqrt {\frac{{{\lambda _0}\, – \,\,\frac{3}{4}\lambda }}{{\frac{3}{4}\lambda {\lambda _0}}}\,\, \times \,\,\frac{{\lambda {\lambda _0}}}{{{\lambda _0}\, – \,\,\lambda }}} \,\,\,\,$

$\therefore \,\,\upsilon '\,\, = \,\,\upsilon \,{\left( {\frac{4}{3}} \right)^{\frac{1}{2}}}\,\sqrt {\frac{{{\lambda _0}\, – \,\,\frac{3}{4}\,\lambda }}{{{\lambda _0}\, – \,\,\lambda }}} \,$

$\therefore \,\,\upsilon '\,\, > \,\,\upsilon \,{\left( {\frac{4}{3}} \right)^{\frac{1}{2}}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.