In a radioactive material the activity at time $t_1$ is $R_1$ and at a later time $t_2$ it is $R_2$. If the decay constant of the material is $\lambda$ then
$R_1=R_2$
$R_1=R_2 {e^{ - \lambda \left( {t_1- t_2} \right)}}$
$R_1=R_2{e^{\lambda \left( {t_1 - t_2} \right)}}$
$R_1=R_2 \left( {\frac{{t_1}}{{t_2}}} \right)$
Which is the correct expression for half-life
In a radioactive decay process, the activity is defined as $A=-\frac{\mathrm{d} N}{\mathrm{~d} t}$, where $N(t)$ is the number of radioactive nuclei at time $t$. Two radioactive sources, $S_1$ and $S_2$ have same activity at time $t=0$. At a later time, the activities of $S_1$ and $S_2$ are $A_1$ and $A_2$, respectively. When $S_1$ and $S_2$ have just completed their $3^{\text {rd }}$ and $7^{\text {th }}$ half-lives, respectively, the ratio $A_1 / A_2$ is. . . . . . .
The mean lives of a radioactive sample are $30$ years and $60$ years for $\alpha$-emission and $\beta $ -emission respectively. If the sample decays both by $\alpha$- emission and $\beta $-emission simultaneously, the time after which, only one-fourth of the sample remain is :- ........... $years$
A freshly prepared sample of a radioisotope of half-life $1386 \ s$ has activity $10^3$ disintegrations per second. Given that In $2=0.693$, the fraction of the initial number of nuclei (expressed in nearest integer percentage) that will decay in the first $80 \ s$ after preparation of the sample is :
For a substance the average life for $\alpha$-emission is $1620$ years and for $\beta$ emission is $405$ years. After how much time the $1/4$ of the material remains after $\alpha$ and $\beta$ emission .......$years$