निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$
$L.H.S.$ $=\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}$
$=\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}}$
$=\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\cos \theta-\sin \theta}{\cos \theta}}$
$=\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}-\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)}$
$=\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta}\right]$
$=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{\sin ^{3} \theta-\cos ^{3} \theta}{\sin \theta \cos \theta}\right]$
$=\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin \theta \cos \theta}\right]$
$=\frac{(1+\sin \theta \cos \theta)}{(\sin \theta \cos \theta)}$
$=\sec \theta \operatorname{cosec} \theta+1$
$= R . H.S.$
बताइए कि निम्नलिखित सत्य हैं या असत्य हैं। कारण सहित अपने उत्तर की पुष्टि कीजिए।
$A =0^{\circ}$ पर $\cot A$ परिभाषित नहीं है।
यदि $\sin A =\frac{3}{4}$, तो $\cos A$ और $\tan A$ का मान परिकलित कीजिए।
निम्नलिखित के मान निकालिए :
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
$(\sec A+\tan A)(1-\sin A)=..........$
सिद्ध कीजिए कि $\sec A (1-\sin A )( sec A +\tan A )=1$