सर्वसमिका $\sec ^{2} \theta=1+\tan ^{2} \theta$ का प्रयोग करके सिद्ध कीजिए कि

$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Since we will apply the identity involving $\sec \theta$ and $\tan \theta,$ let us first convert the $LHS$ (of the identity we need to prove) in terms of $\sec \theta$ and $\tan \theta$ by dividing numerator and denominator by $\cos \theta .$

$LHS=\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{\tan \theta-1+\sec \theta}{\tan \theta+1-\sec \theta}$

$=\frac{(\tan \theta+\sec \theta)-1}{(\tan \theta-\sec \theta)+1}=\frac{\{(\tan \theta+\sec \theta)-1\}(\tan \theta-\sec \theta)}{\{(\tan \theta-\sec \theta)+1\}(\tan \theta-\sec \theta)}$

$=\frac{\left(\tan ^{2} \theta-\sec ^{2} \theta\right)-(\tan \theta-\sec \theta)}{\{\tan \theta-\sec \theta+1\}(\tan \theta-\sec \theta)}$

$=\frac{-1-\tan \theta+\sec \theta}{(\tan \theta-\sec \theta+1)(\tan \theta-\sec \theta)}$

$=\frac{-1}{\tan \theta-\sec \theta}=\frac{1}{\sec \theta-\tan \theta}$

which is the RHS of the identity, we are required to prove.

Similar Questions

यदि $\tan ( A + B )=\sqrt{3}$ और $\tan ( A - B )=\frac{1}{\sqrt{3}} ; 0^{\circ}< A + B \leq 90^{\circ} ; A > B$ तो $A$ और $B$ का मान जात कीजिए।

यदि $3 \cot A =4$, तो जाँच कीजिए कि $\frac{1-\tan ^{2} A }{1+\tan ^{2} A }=\cos ^{2} A -\sin ^{2} A$ है या नहीं।

$\cot 85^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।

निम्नलिखित के मान निकालिए :

$\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$

यदि $15 \cot A =8$ हो तो $\sin\, A$ और $sec\, A$ का मान ज्ञात कीजिए।