In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then

$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$

Now  $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$

${ = n(U) - n(A \cup B)}$

${ = n(U) - n(A) - n(B) + n(A \cap B)}$

${ = 400 - 100 - 150 + 75 = 225\,}$

Hence $225$ students were taking neither apple juice nor orange juice.

Similar Questions

Out of $800$ boys in a school, $224$ played cricket, $240$ played hockey and $336$ played basketball. Of the total, $64$ played both basketball and hockey; $80$ played cricket and basketball and $40$ played cricket and hockey; $24$ played all the three games. The number of boys who did not play any game is

There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to

Chemical $C_{1}$ or chemical $C_{2}$

In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?

In a class of $100$ students, $55$ students have passed in Mathematics and $67$ students have passed in Physics. Then the number of students who have passed in Physics only is

In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is

  • [KVPY 2017]