In a survey of $400$ students in a school, $100$ were listed as taking apple juice, $150$ as taking orange juice and $75$ were listed as taking both apple as well as orange juice. Find how many students were taking neither apple juice nor orange juice.
Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then
$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$
Now $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$
${ = n(U) - n(A \cup B)}$
${ = n(U) - n(A) - n(B) + n(A \cap B)}$
${ = 400 - 100 - 150 + 75 = 225\,}$
Hence $225$ students were taking neither apple juice nor orange juice.
Out of $800$ boys in a school, $224$ played cricket, $240$ played hockey and $336$ played basketball. Of the total, $64$ played both basketball and hockey; $80$ played cricket and basketball and $40$ played cricket and hockey; $24$ played all the three games. The number of boys who did not play any game is
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{1}$ or chemical $C_{2}$
In a committee, $50$ people speak French, $20$ speak Spanish and $10$ speak both Spanish and French. How many speak at least one of these two languages?
In a class of $100$ students, $55$ students have passed in Mathematics and $67$ students have passed in Physics. Then the number of students who have passed in Physics only is
In a Mathematics test, the average marks of boys is $x \%$ and the average marks of girls is $y \%$ with $x \neq y$. If the average marks of all students is $z \%$, the ratio of the number of girls to the total number of students is