In a survey of $60$ people, it was found that $25$ people read newspaper $H , 26$ read newspaper $T, 26$ read newspaper $I, 9$ read both $H$ and $I, 11$ read both $H$ and $T,$ $8$ read both $T$ and $1,3$ read all three newspapers. Find:
the number of people who read at least one of the newspapers.
Let $A$ be the set of people who read newspaper $H.$
Let $B$ be the of people who read newspaper $T.$
Let $C$ be the set of people who read newspaper $I.$
Accordingly, $n(A)=25, n(B)=26,$ and $n(C)=26$
$n(A \cap C)=9, n(A \cap B)=11,$ and $n(B \cap C)=8$
$n(A \cap B \cap C)=3$
Let $U$ be the set of people who took part in the survey.
Accordingly,
$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)$
$=25+26+26-11-8-9+3$
$=52$
Hence, $52$ people read at least one of the newspapers.
There are $200$ individuals with a skin disorder, $120$ had been exposed to the chemical $C _{1}, 50$ to chemical $C _{2},$ and $30$ to both the chemicals $C _{1}$ and $C _{2} .$ Find the number of individuals exposed to
Chemical $C_{2}$ but not chemical $C_{1}$
In a class of $100$ students,$15$ students chose only physics (but not mathematics and chemistry),$3$ chose only chemistry (but not mathematics and physics), and $45$ chose only mathematics(but not physics and chemistry). Of the remaining students, it is found that $23$ have taken physics and chemistry,$20$ have taken physics and mathematics, and $12$ have taken mathematics and chemistry. The number of student who chose all the three subjects is
Let $X = \{ $ Ram ,Geeta, Akbar $\} $ be the set of students of Class $\mathrm{XI}$, who are in school hockey team. Let $Y = \{ {\rm{ }}$ Geeta, David, Ashok $\} $ be the set of students from Class $\mathrm{XI}$ who are in the school football team. Find $X \cup Y$ and interpret the set.
A survey shows that $63 \%$ of the people in a city read newspaper $A$ whereas $76 \%$ read newspaper $B$. If $x \%$ of the people read both the newspapers, then a possible value of $x$ can be
In a classroom, one-fifth of the boys leave the class and the ratio of the remaining boys to girls is $2: 3$. If further $44$ girls leave the class, then class the ratio of boys to girls is $5: 2$. How many more boys should leave the class so that the number of boys equals that of girls?