એક શાળાના $400$ વિદ્યાર્થીઓની મોજણી કરી. $100$ વિદ્યાર્થી સફરજનનો રસ પીએ છે, $150$ નારંગીનો રસ પીએ છે અને $75$ વિદ્યાર્થીઓ સફરજન તેમજ નારંગી બંનેનો રસ પીએ છે. કેટલા વિદ્યાર્થીઓ સફરજન અને નારંગી પૈકી એકપણનો રસ પીતા નથી?
Let $U$ denote the set of surveyed students and $A$ denote the set of students taking apple juice and $B$ denote the set of students taking orange juice. Then
$n(U) = 400,n(A) = 100,n(B) = 150$ and $n(A \cap B) = 75$
Now $n\left( {{A^\prime } \cap {B^\prime }} \right) = n{(A \cup B)^\prime }$
${ = n(U) - n(A \cup B)}$
${ = n(U) - n(A) - n(B) + n(A \cap B)}$
${ = 400 - 100 - 150 + 75 = 225\,}$
Hence $225$ students were taking neither apple juice nor orange juice.
એક બજાર-સંશોધન જૂથે $1000$ ઉપભોક્તાઓની મોજણી કરી અને શોધ્યું કે $720$ ગ્રાહકો ઉત્પાદન $\mathrm{A}$ પસંદ કરે છે અને $450$ ઉત્પાદન $\mathrm{B}$ પસંદ કરે છે. બંને ઉત્પાદન પસંદ કરનાર ઉપભોક્તાની ન્યૂનતમ સંખ્યા કેટલી હશે ?
એક વર્ગમાં $100$ વિર્ધાથી છે જેમાંથી $55$ ગણિતમાં અને $67$ માં ભૈતિક વિજ્ઞાનમાં પાસ થાય છે.તો માત્ર ભૈતિક વિજ્ઞાનમાં પાસ થયેલ વિર્ધાથીની સંખ્યા મેળવો.
એક શાળામાં $20$ શિક્ષકો ગણિત અથવા ભૌતિકવિજ્ઞાન શીખવે છે. આ શિક્ષકો પૈકી $12$ ગણિત શીખવે છે અને $4$ ભૌતિકવિજ્ઞાન અને ગણિત બંને વિષય શીખવે છે. કેટલા શિક્ષકો ભૌતિકવિજ્ઞાન શીખવતા હશે ?
હોસ્પિટલમાં $89\, \%$ દર્દીને હદયની બીમારી છે અને $98\, \%$ એ ફેફસાની બીમારી છે. જો $\mathrm{K}\, \%$ દર્દીને જો બંને પ્રકારની બીમારી હોય તો $\mathrm{K}$ ની કિમંત આપલે પૈકી ક્યાં ગણમાં શક્ય નથી.
વિદ્યાર્થીઓના એક જૂથમાં, $100$ વિદ્યાર્થીઓ હિન્દી જાણે છે, $50$ અંગ્રેજી જાણે છે અને $25$ બંને ભાષા જાણે છે. આ જૂથમાં કેટલા વિદ્યાર્થીઓ હશે ?