मात्रकों की किसी पद्धति में यदि बल $(F)$, त्वरण $(a)$ एवं समय $(T) $ को मूल मात्रक माना जाये तो ऊर्जा का विमीय-सूत्र होगा
$F{A^2}T$
$FA{T^2}$
${F^2}AT$
$FAT$
यदि $a$ त्रिज्या का एक गोला $v$ चाल से $\eta$ श्यानता नियताकं के एक द्रव में चलता है, तो स्टोक के नियमानुसार (Stoke's Law) उस पर $F$ श्यानता बल लगता है, जिसे निम्न समीकरण से दिखाया गया है : $F=6 \pi \eta a v$ यदि यह द्रव एक बेलनाकार नली, जिसकी त्रिज्या $r$, लंबाई 1 , एवं दोनों सिरों पर दाबांतर $P$ है, के अंदर बह रहा है, तब जल का $t$ समय में बहा हुआ आयतन निम्न प्रकार से लिखा जा सकता है:
$\stackrel{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c \text {, }$
जहाँ $k$ एक विमाहीन स्थिरांक है । $a, b$ एवं $c$ के सही मान निम्नलिखित हैं:
यंग - लाप्लास के नियमानुसार $R$ त्रिज्या वाले साबुन के बुलबुले के अंदर आंतरिक दाब निम्नलिखित समीकरण द्वारा दिया जाता है : $\triangle P=4 \sigma / R$, जहाँ $\sigma$ साबून का पृष्ठ तनाव स्थिरांक है। एतवोस संख्या (Eotvos number) $E_o$ एक विमाहीन (dimensionless) संख्या है जो द्रव की सतह पर उभरे हुए साबुन के बुलबुले के आकार का वर्णन करता है। यह गुरुत्वीय त्वरण $(g)$, घनत्व $(\rho)$ और लाक्षणिक लंबाई (characteristic length) $L$, जो कि बुलबुले की त्रिज्या भी हो सकती है, के द्वारा निरूपित किया जाता है। $E_o$ का एक संभावित व्यंजक है
एक भौतिक राशि $\vec{S}$ को $\vec{S}=(\vec{E} \times \vec{B}) / \mu_0$ से परिभाषित किया जाता है, जहाँ $\vec{E}$ विद्युत क्षेत्र (electric field), $\vec{B}$ चुम्बकीय क्षेत्र (magnetic field) और $\mu_0$ निर्वात की चुबंकशीलता (permeability of free space) है। निम्न में से किसकी (किनकी) विमाएँ $\vec{S}$ की विमाओं के समान है?
$(A)$ $\frac{\text { Energy }}{\text { charge } \times \text { current }}$
$(B)$ $\frac{\text { Force }}{\text { Length } \times \text { Time }}$
$(C)$ $\frac{\text { Energy }}{\text { Volume }}$
$(D)$ $\frac{\text { Power }}{\text { Area }}$
राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी