સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$

Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$

Sum of last four terms

$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$

$=4 a+(4 n-10) d$

According to the given condition,

$4 a+6 d=56$

$\Rightarrow 4(11)+6 d=56$            [ Since $a=11$ (given) ]

$=6 d=12$

$=d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+(4 n-10) 2=112$

$\Rightarrow(4 n-10) 2=68$

$\Rightarrow 4 n-10=34$

$\Rightarrow 4 n=44$

$\Rightarrow n=11$

Thus, the number of terms of the $A.P.$ is $11 .$

Similar Questions

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_9}$ પદ શોધો : $a_{n}=(-1)^{n-1} n^{3}$ 

જો સમાંતર શ્રેણીનું $p$ મું પદ $q$ અને તેનું $q$ મું પદ $p$ હોય, તો તેનું $(p + q)$ મું પદ કયું હોય ?

ધારોકે $\alpha, \beta$ અને $\gamma$ ત્રણ ધન વાસ્તવિક સંખ્યાઓ છે. ધારોકે $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in R$ અને $g: R \rightarrow R$ એવું છે કે જેથી પ્રત્યેક $x \in R$ માટે $g(f(x))=x$ થાય. ને $a _{1}, a _{2}, a _{3}, \ldots, a _{ n }$ સમાંતર શ્રેણીમાં હોય અને તેનો મધ્યક શૂન્ય હોય, તો $f\left(g\left(\frac{1}{ n } \sum_{i=1}^{ n } f\left( a _{i}\right)\right)\right)$ ની કિંમત .............. છે.

  • [JEE MAIN 2022]

જો પહેલા $n$ યુગ્મ પ્રાકૃતિક સંખ્યાનો સરવાળો, એ પહેલા $n$ અયુગ્મ પ્રાકૃતિક સંખ્યાઓનાં સરવાળાના $k$ ગણા બરાબર હોય તો, $k = ........$

$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$