8. Sequences and Series
hard

સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.

A

$11$

B

$11$

C

$11$

D

$11$

Solution

Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$

Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$

Sum of last four terms

$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$

$=4 a+(4 n-10) d$

According to the given condition,

$4 a+6 d=56$

$\Rightarrow 4(11)+6 d=56$            [ Since $a=11$ (given) ]

$=6 d=12$

$=d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+(4 n-10) 2=112$

$\Rightarrow(4 n-10) 2=68$

$\Rightarrow 4 n-10=34$

$\Rightarrow 4 n=44$

$\Rightarrow n=11$

Thus, the number of terms of the $A.P.$ is $11 .$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.