સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$

Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$

Sum of last four terms

$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$

$=4 a+(4 n-10) d$

According to the given condition,

$4 a+6 d=56$

$\Rightarrow 4(11)+6 d=56$            [ Since $a=11$ (given) ]

$=6 d=12$

$=d=2$

$\therefore 4 a+(4 n-10) d=112$

$\Rightarrow 4(11)+(4 n-10) 2=112$

$\Rightarrow(4 n-10) 2=68$

$\Rightarrow 4 n-10=34$

$\Rightarrow 4 n=44$

$\Rightarrow n=11$

Thus, the number of terms of the $A.P.$ is $11 .$

Similar Questions

$1 + 3 + 5 + 7 + …n$ પદ સુધી =…..

જો એક બહુકોણના બધા આંતરિક ખૂણાઓ સમાંતર શ્રેણીમાં હોય અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો મેળવો 

જો $a, b, c$ સમાંતર શ્રેણીમાં હોય, તો $(a - c)^2 = ……$

શ્રેણી $a_{n}$ નીચે પ્રમાણે વ્યાખ્યાયિત છે :

${a_1} = 1,$ $n\, \ge \,2$ માટે ${a_n} = {a_{n - 1}} + 2.$

આ શ્રેણીનાં પ્રથમ પાંચ પદ લખો અને સંબંધિત શ્રેઢી લખો : 

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=2^{n}$