- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
સમાંતર શ્રેણીનાં પ્રથમ ચાર પદોનો સરવાળો $56$ છે. તેનાં છેલ્લાં ચાર પદોનો સરવાળો $112$ છે. તેનું પ્રથમ પદ $11$ છે, તો પદોની સંખ્યા શોધો.
A
$11$
B
$11$
C
$11$
D
$11$
Solution
Let the $A.P.$ be $a, a+d, a+2 d, a+3 d \ldots . a+(n-2) d, a+(n-1) d$
Sum of first four terms $=a+(a+d)+(a+2 d)+(a+3 d)=4 a+6 d$
Sum of last four terms
$=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]$
$=4 a+(4 n-10) d$
According to the given condition,
$4 a+6 d=56$
$\Rightarrow 4(11)+6 d=56$ [ Since $a=11$ (given) ]
$=6 d=12$
$=d=2$
$\therefore 4 a+(4 n-10) d=112$
$\Rightarrow 4(11)+(4 n-10) 2=112$
$\Rightarrow(4 n-10) 2=68$
$\Rightarrow 4 n-10=34$
$\Rightarrow 4 n=44$
$\Rightarrow n=11$
Thus, the number of terms of the $A.P.$ is $11 .$
Standard 11
Mathematics