In an entrance test that is graded on the basis of two examinations, the probability of a randomly chosen student passing the first examination is $0.8$ and the probability of passing the second examination is $0.7 .$ The probability of passing at least one of them is $0.95 .$ What is the probability of passing both ?
Let $A$ and $B$ be the events of passing first and second examinations respectively.
Accordingly, $P(A)=0.8$, $P(B)=0.7$ and $P ( A$ or $B )=0.95$
We know that $P ( A$ or $B )= P ( A )+ P ( B )- P ( A$ and $B )$
$0.95=0.8+0.7- P ( A$ and $B )$
$P ( A$ and $B )=0.8+0.7-0.95=0.55$
Thus, the probability of passing both the examinations is $0.55$.
If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$, $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.
In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
If $P(A) = P(B) = x$ and $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then $x = $
The probabilities that $A$ and $B$ will die within a year are $p$ and $q$ respectively, then the probability that only one of them will be alive at the end of the year is
If $A$ and $B$ are two events such that $P\,(A \cup B) = P\,(A \cap B),$ then the true relation is