${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.
$0$
${2^{49}}$
${2^{50}}$
${2^{51}}$
$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $
જો ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , હોય તો ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ ની કિમત મેળવો
$\left(1+x+x^{2}+x^{3}\right)^{6}$ ના વિસ્તરણમાં $x^{4}$ નો સહગુણક ........ થાય
$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . .