${({5^{1/2}} + {7^{1/8}})^{1024}}$ के विस्तार में पूर्णांक पदों की संख्या है
$128$
$129$
$130$
$131$
${\left( {\sqrt {\frac{x}{3}} + \frac{3}{{2{x^2}}}} \right)^{10}}$ के विस्तार में $x$ से स्वतंत्र पद होगा
${\left( {ax - \frac{1}{{b{x^2}}}} \right)^{11}}$ के प्रसार में ${x^{ - 7}}$ का गुणांक होगा
यदि $\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$ के द्विपद प्रसार में अंत से $1011$ वाँ पद, आरंभ से $1011$ वें पद का $1024$ गुना है, तो $|\mathrm{x}|$ बराबर है -
यदि $(1+a)^{n}$ के प्रसार में $a^{r-1}, a^{r}$ तथा $a^{r+1}$ के गुणांक समांतर श्रेणी में हों तो सिद्ध कीजिए कि $n^{2}-n(4 r+1)+4 r^{2}-2=0$
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के प्रसार में ${x^{32}}$ का गुणांक होगा