आरेख में दर्शाए अनुसार द्रव्यमान $M$ का कोई पिण्ड दो द्रव्यमानहीन कमानियों के बीच किसी चिकने आनत तल पर रखा है। कमानियों के मुक्त सिरे दढ़ सपोर्ट से जुड़े हैं। यदि प्रत्येक कमानी स्थिरांक $k$ है, तो दिए गए पिण्ड के दोलन की आवत्ति होगी।

981-818

  • [JEE MAIN 2021]
  • A

    $\frac{1}{2 \pi} \sqrt{\frac{ k }{2 M }}$

  • B

    $\frac{1}{2 \pi} \sqrt{\frac{2 k }{ Mg \sin \alpha}}$

  • C

    $\frac{1}{2 \pi} \sqrt{\frac{2 k }{ M }}$

  • D

    $\frac{1}{2 \pi} \sqrt{\frac{ k }{ Mg \sin \alpha}}$

Similar Questions

किसी कमानी के एक सिरे पर कोई कण आवर्तकाल ${t_1}$ से सरल आवर्त गति करता है, जबकि अन्य कमानी के लिये तदनुरूपी आवर्तकाल ${t_2}$ है। यदि दोनों कमानियों के श्रेणी संजोजन का आवर्तकाल $T$  है, तो

  • [AIEEE 2004]

बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है

  • [IIT 1988]

आरेख में दर्शाए अनुसार कमानी स्थिरांक $'2k'$ की दो सर्वसम कमानियाँ द्रव्यमान $m$ के किसी गुटके और दढ़ सपोर्ट से जुड़ी हैं। जब इस गुटके को इसकी साम्यावस्था से किसी एक ओर विस्थापित किया जाता है तो सरल आवर्त गति करने लगता है। इस निकाय के दोलन का आवर्तकाल होगा।

  • [JEE MAIN 2021]

दिये गये चित्र में $\mathrm{M}$ द्रव्यमान के गुटके की सरल आवर्त गति का आवर्तकाल $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ है, जहाँ $\alpha$ का मान. . . . . . . . . . है।

  • [JEE MAIN 2024]

स्प्रिंग् वाली घड़ी को चन्द्रमा की सतह पर ले जाने से यह