निम्नांकित चित्र स्प्रिंग तुला के निचले पलड़े पर रखे गये विभिन्न द्रव्यमानों $M$ तथा प्राप्त दोलन काल के वर्ग $T{^2}$ के मध्य है। ग्राफ में सरल रेखा का मूल बिन्दु से न निकलने का कारण हो सकता है
स्प्रिंग द्वारा हुक के नियम का पालन न करना
दोलन के आयाम का बहुत अधिक होना
घड़ी के संयोजन की आवश्यकता
पलड़े के भार को नगण्य मानना
एक ऊर्ध्व दिशा की कमानी को धरातल पर चित्र के अनुसार स्थायी किया गया है तथा इसके ऊपरी सिरे के पलड़े पर $2.0$ किग्रा द्रव्यमान की वस्तु रखी है। कमानी और पलड़े के भार नगण्य हैं। थोड़ा दबाकर छोड़ देने पर द्रव्यमान सरल आवर्ती गति करता है। कमानी का बल नियतांक $200$ न्यूटन/मी है। आवर्त गति का न्यूनतम आयाम कितना होना चाहिए, जिससे ऊपर रखी वस्तु पलड़े से अलग हो जाये? (मान लो $g =10$ मी/से $^{2})$
अभ्यास में, मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति $x=0$ है तथा बाएँ से दाएँ की दिशा $x-$ अक्ष की धनात्मक दिशा है । दोलन करते पिण्ड के विस्थापन $x$ को समय के फलन के रूप मे दर्शाइए, जबकि विराम घड़ी को आरंभ $(t=0)$ करते समय पिण्ड,
$(a)$ अपनी माध्य स्थिति,
$(b)$ अधिकतम तानित स्थिति, तथा
$(c)$ अधिकतम संपीडन की स्थिति पर है ।
सरल आवर्त गति के लिए ये फलन एक दूसरे से आवृत्ति में, आयाम में अथवा आरंभिक कला में किस रूप में भिन्न हैं ?
एक स्प्रिंग का आवर्तकाल $T$ है। यदि इसे $n$ समान भागों में तोड़ दिया जाये तो प्रत्येक भाग का आवर्तकाल होगा
दिए गए आरेख में $M$ द्रव्यमान का एक पिण्ड एक क्षैतिज कमानी से बंधा हैं, जिसका दूसरा सिरा किसी दढ़ सपोर्ट से जुड़ा है। कमानी का कमानी स्थिरांक $k$ है। यह पिण्ड किसी घर्षणहीन पष्ठ पर आवर्तकाल $T$ और आयाम $A$ के साथ दोलन करता है। जब यह पिण्ड साम्यावस्था की स्थिति पर होता है (आरेख देखिए) तब कोई अन्य पिण्ड, जिसका द्रव्यमान $m$ है, इस पिण्ड के ऊपर धीरे से जोड़ दिया जाता है। अब दोलन का नया आयाम होगा।
एक स्प्रिंग् से कोई द्रव्यमान $m$ लटकाकर दोलन कराने पर आवर्तकाल $T$ है। स्प्रिंग् को अब दो बराबर भागों में विभक्त कर किसी एक भाग से वही द्रव्यमान लटकाने पर आवर्तकाल होगा