व्यंजक $P = \frac{\alpha }{\beta }{e^{ - \frac{{\alpha Z}}{{k\theta }}}}$ में $P$ दाब, $ Z$ दूरी, $k$ बोल्ट्जमैन स्थिरांक एवं तापक्रम दर्शाता है तो का विमीय सूत्र होगा
$[{M^0}{L^2}{T^0}]$
$[{M^1}{L^2}{T^1}]$
$[{M^1}{L^0}{T^{ - 1}}]$
$[{M^0}{L^2}{T^{ - 1}}]$
$r$ त्रिज्या एवं $l$ लम्बाई की एक नली जिसके सिरे पर दाबान्तर $p$ है, से $\eta $ श्यानता का द्रव बह रहा है, तब प्रति सैकण्ड बहने वाले द्रव के आयतन $V$ के लिये विमीय रुप के संगत सम्बन्ध है
$m$ द्रव्यमान एवं $r$ त्रिज्या की एक गोलीय वस्तु $\eta $ श्यानता के माध्यम में गिर रही है। वह समय जिसमें वस्तु का वेग शून्य से बढ़कर सीमान्त (टर्मिनल) वेग $v$ का $0.63$ गुना हो जाता है, समय नियतांक $\tau $ कहलाता है। विमीय रुप से $\tau $ को किसके द्वारा व्यक्त कर सकते हैं
राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी
किसी कण की समय $t$ पर स्थिति निम्न प्रकार दी गयी है $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\;(1 - {c^{ - \alpha \,t}})$, जहाँ ${v_0}$ एक नियतांक तथा $\alpha > 0,$ ${v_0}$ व $\alpha $ की विमायें क्रमश: हैं
दो परमाणुओं के मध्य अन्योन्यक्रिया बल सम्बन्ध $F =\alpha \beta \exp \left(-\frac{ x ^{2}}{\alpha kt }\right)$ से दिया जाता है जहाँ $x$ दूरी है, $k$ बोल्ट्जमैन नियतांक तथा $T$ तापमान है और $\alpha$ तथा $\beta$ दो स्थिरांक हैं। $\beta$ की विमा होगी।