$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
$\tan 60^{\circ}$
$\cos 60^{\circ}$
$\sin 60^{\circ}$
$\sin 30^{\circ}$
यदि $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ}< A + B \leq 90^{\circ}, A > B ,$ तो $A$ और $B$ ज्ञात कीजिए
यदि $3 \cot A =4$, तो जाँच कीजिए कि $\frac{1-\tan ^{2} A }{1+\tan ^{2} A }=\cos ^{2} A -\sin ^{2} A$ है या नहीं।
यदि $\sin 3 A =\cos \left( A -26^{\circ}\right)$ हो, जहाँ, $3 A$ एक न्यून कोण है तो $A$ का मान जात कीजिए।
निम्नलिखित का मान निकालिए:
$\cos 48^{\circ}-\sin 42^{\circ}$
सर्वसमिका $\sec ^{2} \theta=1+\tan ^{2} \theta$ का प्रयोग करके सिद्ध कीजिए कि
$\frac{\sin \theta-\cos \theta+1}{\sin \theta+\cos \theta-1}=\frac{1}{\sec \theta-\tan \theta}$