એક સમગુણોત્તર શ્રેણીનાં પદોની સંખ્યા યુગ્મ છે. જો બધાં જ પદોનો સરવાળો, અયુગ્મ સ્થાને રહેલ પદોના સરવાળા કરતાં $5$ ગણો હોય, તો સામાન્ય ગુણોત્તર શોધો.
Let the $G.P.$ be $T_{1}, T_{2}, T_{3}, T_{4} \ldots . T_{2 n}$
Number of terms $=2 n$
According to the given condition,
$T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}=5\left[T_{1}+T_{3}+\ldots .+T_{2 n-1}\right]$
$\Rightarrow T_{1}+T_{2}+T_{3}+\ldots .+T_{2 n}-5\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]=0$
$\Rightarrow T_{2}+T_{4}+\ldots .+T_{2 n}=4\left[T_{1}+T_{3}+\ldots . .+T_{2 n-1}\right]$
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \dots$
$\therefore \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1}$
$\Rightarrow a r=4 a$
$\Rightarrow r=4$
Thus, the common ratio of the $G.P.$ is $4$
જો $a _{1}(>0), a _{2}, a _{3}, a _{4}, a _{5}$ સમગુણોતર શ્રેણીમાં હોય, $a _{2}+ a _{4}=2 a _{3}+1$ અને $3 a _{2}+ a _{3}=2 a _{4}$,હોય તો,$a _{2}+ a _{4}+2 a _{5}=\dots\dots\dots$
શ્રેણી $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ નાં પ્રથમ $100$ પદોના સરવાળો જેટલો કે તેથી નાનો મહતમ પૂણાંક ........ છે.
જો $a, b, c$, અને $ p$ ભિન્ન વાસ્તવિક સંખ્યાઓ હોય અને $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right)\, \leq \,0,$ તો બતાવો કે $a, b, c$ અને $d$ સમગુણોત્તર શ્રેણીમાં છે.
સમગુણોત્તર શ્રેણી $3,3^{2}, 3^{3}$... નાં પ્રથમ કેટલાં પદોનો સરવાળો $120$ થાય ?
સમગુણોત્તર શ્રેણીનાં $p,q,r$ માં પદો અનુક્રમે $a, b, c$ હોય તો સાબિત કરો કે,
$a^{q-r} b^{r-p} c^{p-q}=1$