वृत्त ${x^2} + {y^2} + 2gx + 2fy + {c_1} = 0$ के किसी बिन्दु से वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ पर खींची गयी स्पर्श रेखा की लम्बाई होगी
$\sqrt {{c_1} - c} $
$\sqrt {c - {c_1}} $
$\sqrt {{c_1} + c} $
इनमें से कोई नहीं
वृत्त ${x^2} + {y^2} = 50$ के उन बिन्दुओं पर, जहाँ रेखा $x + 7 = 0$ इसको काटती है, स्पर्श रेखाओं के समीकरण हैं
यदि रेखा $x = k$ वृत्त ${x^2} + {y^2} = 9$ का स्पर्श करती हो, तो $k$ का मान है
रेखा $lx + my + n = 0$, वृत्त ${x^2} + {y^2} + 2gx + 2fy + c = 0$ का अभिलम्ब है, यदि
यदि $\frac{x}{\alpha } + \frac{y}{\beta } = 1$ वृत्त ${x^2} + {y^2} = {a^2}$ को स्पर्श करती है, तब बिन्दु $(1/\alpha ,\,1/\beta )$ होगा
बिन्दु $(-1,2)$ से वृत्त ${x^2} + {y^2} + 2x - 4y + 4 = 0$ पर डाली जाने वाली स्पर्श रेखाओं की संख्या है