1.Relation and Function
normal

Let $f(x) = \left\{ {\begin{array}{*{20}{c}}
{\,{x^3} - {x^2} + 10x - 5\,\,,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x \le 1\,\,\,\,\,\,\,\,\,\,\,\,}\\
{ - 2x + {{\log }_2}({b^2} - 2),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x\, > 1\,\,\,\,\,\,\,\,\,\,\,\,}
\end{array}} \right.$ the set of values of $b$ for which $f(x)$ has greatest value at $x = 1$ is given by 

A

$1 \le b \le 2$

B

$b = \{ 1,2\} $

C

$b \in ( - \infty , - 1)$

D

$\left[ { - \sqrt {130} , - \sqrt 2 } \right) \cup \left( {\sqrt 2 ,\sqrt {130} } \right]$

Solution

$f\left(1^{-}\right) \leq f(1)$ and $f\left(1^{+}\right) \leq f(1)$

$-2+\log _{2}\left(b^{2}-2\right) \leq 5$

$0 < {b^2} – 2 \le 128\quad 2 < {b^2} \le 130$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.