જો $\alpha $ અને $\beta $ એ સમીકરણ $5{x^2} - 3x - 1 = 0$ ના ઉકેલો હોય તો $\left[ {\left( {\alpha + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ ની કિમત મેળવો
$x^2 + 3x -5$
$x^2 -3x -5$
$-x^2 + 3x + 5$
એક પણ નહી
ઘન વાસ્તવિક સંખ્યા $x$ છે, જ્યારે તેનો વ્યસ્ત ઉમેરવામાં આવે ત્યારે તે સરવાળાનું મહત્તમ મૂલ્ય આપે છે, તો $x .....$
જો $\alpha $ અને $\beta $ એ દ્રીઘાત સમીકરણ ${x^2}\,\sin \,\theta - x\,\left( {\sin \,\theta \cos \,\,\theta + 1} \right) + \cos \,\theta = 0\,\left( {0 < \theta < {{45}^o}} \right)$ ના ઉકેલો હોય અને $\alpha < \beta $ તો $\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + \frac{{{{\left( { - 1} \right)}^n}}}{{{\beta ^n}}}} \right)} $ = ......
સમીકરણ $\sqrt {3 {x^2} + x + 5} = x - 3$ માટે $x$ ના વાસ્તવિક ઉકેલોનો સંખ્યા ....... છે ?
સમીકરણ $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ ના કેટલા સમેય ઉકેલો મળે ?
જો $\alpha ,\beta$ એ સમીકરણ $x^2 -ax + b = 0$ ના ઉકેલો હોય અને $\alpha^n + \beta^n = V_n$, હોય તો