$0 < \theta < \frac{\pi }{2}$.જો અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\,\theta }} - \frac{{{y^2}}}{{{{\sin }^2}\,\theta }} = 1$ ની ઉત્કેન્દ્રતા $2$ કર્તા વધારે હોય તો નાભીલંબની મહતમ લંબાઈ ક્યાં અંતરાલમાં મળે,
$\left( {3,\infty } \right)$
$\left( {\frac{3}{2},2} \right]$
$\left( {2,3} \right]$
$\left( {1,\frac{3}{2}} \right]$
અહી પરવલય $P: y^{2}=4 x$ ની નાભીજીવા એ રેખા $L: y=m x+c, m>0$ ને સંપાતી છે કે જે પરવલય ને બિંદુઓ $M$ અને $N$ માં છેદે છે. જો રેખા $L$ એ અતિવલય $H : x ^{2}- y ^{2}=4$ નો સ્પર્શક છે .જો $O$ એ $P$ નું શિરોબિંદુ છે અને $F$ એ $H$ ની ધન $x-$અક્ષ પરની નાભી હોય તો ચતુષ્કોણ $OMFN$ નું ક્ષેત્રફળ મેળવો.
જેની નાભિઓ $(-2, 0)$ અને $(2, 0)$ હોય, અને ઉત્કેન્દ્રતા $2$ હોય તેવા અતિવલયનું સમીકરણ :
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $5 y^{2}-9 x^{2}=36$
જેથી નાભિઓ $(6, 5), (-4, 5)$ હોય અને ઉત્કેન્દ્રતા $5/4$ હોય તેવા અતિવલયનું સમીકરણ :
એક અતિવલયની નાભિઓ $( \pm 2,0)$ અને તેની ઉત્કેન્દ્રતા $\frac{3}{2}$ છે. અતિવલય પરના પ્રથમ ચરણમાંના એક બિંદુ પર, રેખા $2 x+3 y=6$ ને લંબ એક સ્પર્શક દોરવામાં આવે છે.જો સ્પર્શક દ્વારા $x-$ અને $y-$અક્ષો પર બનતા અંતઃખંડો અનુક્રમે $a$ અને $b$ હોય, તો $|6 a|+|5 b|=..........$