અતિવલય $H : x^{2}-y^{2}=1$ અને ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b >0$, માટે ધારોકે
$(1)$ $E$ ની ઉત્કેન્દ્રતા એ $H$ ની ઉત્કેન્દ્રતાની વ્યસ્ત છે, અને
$(2)$ રેખા $y=\sqrt{\frac{5}{2}} x+ K$ એ $E$ અને $H$ નો સામાન્ય સ્પર્શક છે.
તો $4\left(a^{2}+b^{2}\right)=$ ...........
$2$
$0$
$1$
$3$
જો અતિવલય એ બિંદુ $\mathrm{P}(10,16)$ માંથી પસાર થાય છે અને તેનું શિરોબિંદુ $(\pm 6,0)$ હોય તો બિંદુ $P$ આગળના અભિલંભનું સમીકરણ મેળવો.
વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. રેખા $2x + y = 1$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$નો સ્પર્શક છે. જો આ રેખા એ ખૂબ જ નજીકની નિયામિકા અને $x$-અક્ષોના છેદબિંદુમાંથી પસાર થતી હોય, તો અતિવલયની ઉત્કેન્દ્રતા મેળવો.
ધારો કે $\mathrm{S}$ એ અતિવલય $\frac{x^2}{3}-\frac{y^2}{5}=1$ ની ધન $x$-અક્ષ પર આવેલ નાભિ છે. ધારો કે $\mathrm{C}$ એ કેન્દ્ર $\mathrm{A}(\sqrt{6}, \sqrt{5})$ અને બિંદુ $S$ માંથી પસાર થતું વર્તુળ છે.જો $\mathrm{O}$ ઊગમબિંદૂ હોય અને $SAB$ એ $C$ નો વ્યાસ હોય, તો ત્રિકોણ $OSB$ ના ક્ષેત્રફળનો વર્ગ ............. છે.
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $16 x^{2}-9 y^{2}=576$
એક ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ એ અતિવલય $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$ નાં શિરોબિંદુઓમાંથી પસાર થાય છે. ધારોક ઉપવલય $E$ ની પ્રધાન અને ગૌણ અક્ષો, અતિવલય $H$ ની અનુક્રમે મુખ્ય અને અનુબદ્ધ અક્ષો સાથે સંપાતિ છે. ધારો કે $E$ અને $H$ ની ઉત્કેન્દ્રતાઓનો ગુણાકાર $\frac{1}{2}$ છે. જો ઉપવલય $E$ ના નાભિલંબની લંબાઈ $l$ હોય, તો $113 l$ નું મૂલ્ય ............. છે.