माना $a _{1}, a _{2}, \ldots \ldots a _{30}$ एक समांतर श्रेणी है. $S =\sum_{i=1}^{30} a _{i}$ तथा $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $ यदि $a _{5}=27$ तथा $S -2 T =75$, तो $a _{10}$ बराबर है
$52$
$57$
$47$
$42$
यदि किसी समान्तर श्रेणी के $p$ वें पद का $p$ गुना, $q$ वें पद के $q$ गुना के बराबर है, तब $(p + q)$ वाँ पद है
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=\frac{2 n-3}{6}$
मान लें कि प्राकृत संख्याएँ $a, b, c, d, e$ एक अंकगणितीय श्रेढ़ी $(arithmetic\,\,progression)$ में इस प्रकार हैं कि $a+b+c+d+e$ एक पूर्णांक का घन $(cube)$ है तथा $b+c+d$ एक पूर्णांक का वर्ग है। तब $c$ संख्या में न्यूनतम अंक का मान है
माना $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2$ तथा $\left(1-\frac{\beta}{2} x \right)^6, \beta > 0$ के प्रसार में मध्य पदों के गुणांक क्रमश: एक $A.P.$ के पहले तीन पद हैं। यदि इस $A.P.$ का सार्व अंतर $d$ है, तो $50-\frac{2 d }{\beta^2}$ बराबर है
निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$