माना $a _{1}, a _{2}, \ldots, a _{ n }$ एक दी गई समांतर श्रेढ़ी है, जिसका सार्वअंतर एक पूर्णाक है तथा $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ है। यदि $a _{1}=1, a _{ n }=300$ तथा $15 \leq n \leq 50$, हैं, तो क्रमित युग्म $\left( S _{ n -4,{ }^{ n -4}}\right)$ बराबर है
$(2480,249)$
$(2490,249)$
$(2490,248)$
$(2480,248)$
माना $3,7,11,15, \ldots, 403$ तथा $2,5,8,11, \ldots$ $404$ दो समान्तर श्रेढ़ियाँ है तो इनमें उभयनिष्ठ पदों का योग है .............
यदि $a,b,c,d,e$ समान्तर श्रेणी में हों, तो $a + b + 4c - 4d + e$ का मान $a$ के पदों में होगा (यदि संभव हो तो)
$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ जहाँ $n \geq 2$
समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है