माना $a _{1}, a _{2}, \ldots, a _{ n }$ एक दी गई समांतर श्रेढ़ी है, जिसका सार्वअंतर एक पूर्णाक है तथा $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ है। यदि $a _{1}=1, a _{ n }=300$ तथा $15 \leq n \leq 50$, हैं, तो क्रमित युग्म $\left( S _{ n -4,{ }^{ n -4}}\right)$ बराबर है

  • [JEE MAIN 2020]
  • A

    $(2480,249)$

  • B

    $(2490,249)$

  • C

    $(2490,248)$

  • D

    $(2480,248)$

Similar Questions

यदि किसी समान्तर श्रेणी का प्रथम पद $10$ व अन्तिम पद $50$ है तथा सभी पदों का योग $300$ हो, तो पदों की संख्या है

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=2^{n}$

अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए

$a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ जहाँ $n \geq 2$

यदि $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ एक वर्धमान $A.P.$ है और इसके पदों का प्रसरण $90$ है, तो इस $A.P.$ का सार्व अन्तर है

  • [JEE MAIN 2020]

यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो  $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा