माना $a _{1}, a _{2}, \ldots, a _{ n }$ एक दी गई समांतर श्रेढ़ी है, जिसका सार्वअंतर एक पूर्णाक है तथा $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ है। यदि $a _{1}=1, a _{ n }=300$ तथा $15 \leq n \leq 50$, हैं, तो क्रमित युग्म $\left( S _{ n -4,{ }^{ n -4}}\right)$ बराबर है
$(2480,249)$
$(2490,249)$
$(2490,248)$
$(2480,248)$
माना कि एक समान्तर श्रेणी (arithmetic progression ($A.P.$)) के सभी पद धन पूर्णांक हैं । इस समान्तर श्रेणी में यदि पहले सात ($7$) पदों के योग और पहले ग्यारह ($11$) पदों के योग का अनुपात $6: 11$ है तथा सातवाँ पद $130$ और $140$ के बीच मं स्थित है, तब इस समान्तर श्रेणी के सार्व अन्तर (common difference) का मान है
$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |
यदि किसी समांतर श्रेणी के $n$ पदों का योगफल $\left(p n+q n^{2}\right)$, है, जहाँ $p$ तथा $q$ अचर हों तो सार्व अंतर ज्ञात कीजिए।
यदि किसी समान्तर श्रेणी के $11$ वें पद का दुगना, उसके $21$ वें पद के $7$ गुने के बराबर हो, तो $25$ वाँ पद होगा
एक राशि, दूसरी राशि की व्युत्क्रम है। यदि दोनों राशियों का समान्तर माध्य $\frac{{13}}{{12}}$ है, तो राशियाँ होंगी