माना फलन $f : R \rightarrow R$ इस प्रकार है कि $f ( x )= x ^{3}+ x ^{2} f ^{\prime}(1)+ xf ^{\prime \prime}(2)+ f ^{\prime \prime \prime}(3), x \in R$ तो $f(2)$ बराबर है
$-4$
$30$
$-2$
$8$
यदि महत्तम पूर्णांक फलन में, प्रान्त वास्तविक संख्याओं का समुच्चय है ता परिसर समुच्चय होगा
यदि $R$ वास्तविक संख्याओं का एक समुच्चय इस प्रकार है कि $f: R \rightarrow R$ निम्नलिखित द्वारा परिभाषित होता है
$f(x)=\frac{[x]}{1+[x]^2}$, जहाँ $[x]$ अधिकतम पूर्णांक जो $x$ के बराबर या उससे छोटा है तथा $[x\}=x-[x]$.तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $f^{\prime}$ का परास $(range)$ एक बंद अन्तराल $(closed\,interval)$ है
$II$. $f, R$ पर सतत $(continuous)$ फलन है
$III$. $f$. $I$पर एकैक $(one-one)$ फलन है
यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के
माना $f( x )= a ^{ x }( a >0)$ को $f( x )=f_{1}( x )+f_{2}( x )$, के रूप में लिखा गया है जबकि $f_{1}( x )$ एक सम फलन है और $f_{2}( x )$ एक विषम फलन है, तो $f_{1}( x + y )+f_{1}( x - y )$ बराबर है
मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है
$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\
0 & \text { if } x=0\end{array}\right.$
तब $x=0$ पर $f$