माना एक अवकलनीय फलन $\mathrm{f}: \mathrm{R} \rightarrow(0, \infty)$ के लिए $5 f(x+y)=f(x) \cdot f(y), \forall x, y \in R$ है। यदि $\mathrm{f}(3)=320$, तो $\sum_{\mathrm{n}=0}^5 \mathrm{f}(\mathrm{n})$ बराबर है :
$6875$
$6575$
$6825$
$6528$
सिद्ध कीजिए कि $f(x)=[x]$ द्वारा प्रदत्त महत्तम पूर्णाक फलन $f: R \rightarrow R$, न तो एकैकी है और न आच्छादक है, जहाँ $[x], x$ से कम या उसके बराबर महत्तम पूर्णाक को निरूपित करता है।
इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :
फलन $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ का प्रान्त है
एकैकी फलन
$f :\{ a , b , c , d \} \rightarrow\{0,1,2, \ldots, 10\}$
की संख्या, ताकि $2 f ( a )- f ( b )+3 f ( c )+ f ( d )=0$
है, होगी
एकैकी आच्छादक फलनों $f :\{1,3,5,7, \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots ., 100\}$
जिनके लिए $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . \geq f(99)$ हैं, की संख्या है