જો ${a_2},{a_3} \in R$ એવા છે કે જેથી $\left| {{a_2} - {a_3}} \right| = 6$ અને $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ હોય તો $f(x)$ ની મહત્તમ કિમત મેળવો.
$36$
$24$
$12$
$9$
જો શૂન્યતર વાસ્તવિક સંખ્યા $b$ અને $c$ છે કે જેથી $min \,f\left( x \right) > \max \,g\left( x \right)$, કે જ્યાં $f\left( x \right) = {x^2} + 2bx + 2{c^2}$ અને $g\left( x \right) = {-x^2} - 2cx + {b^2}$$\left( {x \in R} \right)$; તો $\left| {\frac{c}{b}} \right|$ એ . . . અંતરાલ માં છે .
વિધેય $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ હોય તો f (x) નો વિસ્તાર મેળવો
ધારો કે $a,b,c\; \in R.$ જો $f\left( x \right) = a{x^2} + bx + c$ હોય કે જેથી $a + b + c = 3$ અને $f\left( {x + y} \right) = f\left( x \right) + f\left( y \right) + xy,$ $\forall x,y \in R,$ તો $\mathop \sum \limits_{n = 1}^{10} f\left( n \right)$ની કિંમત મેળવો.
જો $f(x)$ અને $g(x)$ બન્ને વિધેય માટે $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$ $f(x)$ = $log^3x + 3$ હોય તો વક્ર $y = g(x)$ નો $x = \ -1$ આગળના સ્પર્શકનો ઢાળ ......... છે.
સાબિત કરો કે માનાંક વિધેય $f : R \rightarrow R,$ $(x)=|x|$ દ્વારા વ્યાખ્યાયિત વિધેય એક-એક નથી અને વ્યાપ્ત પણ નથી. જો $x$ ધન અથવા શૂન્ય (અનૃણ) હોય, તો $|x| = x$ અને $x$ ઋણ હોય, તો $|x| = - x$.