4-2.Quadratic Equations and Inequations
hard

ધારોકે $\alpha, \beta$ એ સમીકરણ $x^2-\left(t^2-5 t+6\right) x+1=0, t \in \mathbb{R}$ નાં ભિન્ન બીજ છે અને $a_n=\alpha^n+\beta^n$. તો $\frac{a_{2023}+a_{2025}}{a_{2024}}$ નું ન્યૂનતમ મૂલ્ય .............છે.

A

 $1 / 4$

B

$-1 / 2$

C

 $-1 / 4$

D

$1 / 2$

(JEE MAIN-2024)

Solution

by netwton's theroem

$ a_{n+2}-\left(t^2-5 t+6\right) a_{n+1}+a_n=0 $

$ \therefore a_{2025}+a_{2023}=\left(t^2-5 t+6\right) a_{2024} $

$ \therefore \frac{a_{2025}+a_{2023}}{a_{2024}}=t^2-5 t+6 $

$ \because t^2-5 t+6=\left(t-\frac{5}{2}\right)^2-\frac{1}{4} $

$ \therefore \text { minimum value }=-\frac{1}{4}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.